PROPERTIES OF EXPONENTS

Definition:	base \rightarrow 7 ⁵ \land exponent	nt $\mathbf{7^5} = 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7$
Property Name	Property	Example
One-to-one	$b^x = b^y \iff x = y,$ for $b > 0, b \neq 1$	$2^x = 2^3 \iff x = 3$
Zero as an Exponent Any number to the zero power is 1	$x^0 = 1$ Note : 0^0 is not defined.	$94^0 = 1$ $394^0 = 1$
Multiplication Keep the base and <u>add</u> exponents	$(x^m)(x^n) = x^{m+n}$	$(x^2)(x^3) = x^{2+3} = x^5$
Quotient Keep the base and <u>subtract</u> exponents	$\frac{x^m}{x^n} = x^{m-n}$	$\frac{x^7}{x^2} = x^{7-2} = x^5$
Negative Exponent Use the reciprocal and change the exponent sign	$x^{-n} = \frac{1}{x^n}$ and $\frac{1}{x^{-n}} = x^n$	$x^{-2} = \frac{1}{x^2}$ and $\frac{1}{x^{-2}} = x^2$
Power Property <u>Multiply</u> exponents	$(x^m)^n = x^{mn}$	$(x^2)^3 = x^{(2)(3)} = x^6$
Power of Products and Quotients <i>Multiply the exponents and</i> <i>simplify</i>	$(x^{m}y^{n})^{p} = x^{mp}y^{np}$ AND $\left(\frac{x^{m}}{y^{n}}\right)^{p} = \frac{x^{mp}}{y^{np}}$	$(x^{2}y^{3})^{4} = x^{(2)(4)}y^{(3)(4)} = x^{8}y^{12}$ AND $\left(\frac{x^{3}}{y^{2}}\right)^{4} = \frac{x^{(3)(4)}}{y^{(2)(4)}} = \frac{x^{12}}{y^{8}}$
Fractional Exponents	$b^{\frac{m}{n}} = \left(\sqrt[n]{b}\right)^m = \sqrt[n]{b^m}$	$b^{\frac{2}{3}} = (\sqrt[3]{b})^{2} = \sqrt[3]{b^{2}}$ AND $b^{-\frac{2}{3}} = \frac{1}{(\sqrt[3]{b})^{2}} = \frac{1}{\sqrt[3]{b^{2}}}$
Power Rule for a Product Same exponents, multiply the base	$(a^n)(b^n) = (a \cdot b)^n$	$(2^4)(3^4) = (2 \cdot 3)^4 = 6^4 = 1296$