PROPERTIES OF EXPONENTS

Definition:
base $\rightarrow \mathbf{7}^{\mathbf{5}}$ § exponent
$7^{5}=7 \cdot 7 \cdot 7 \cdot 7 \cdot 7$

Property Name	Property	Example
One-to-one	$\begin{aligned} & b^{x}=b^{y} \Leftrightarrow x=y \\ & \text { for } b>0, b \neq 1 \end{aligned}$	$2^{x}=2^{3} \Leftrightarrow x=3$
Zero as an Exponent Any number to the zero power is 1	$x^{0}=1$ Note: 0^{0} is not defined.	$\begin{gathered} 94^{0}=1 \\ 394^{0}=1 \end{gathered}$
Multiplication Keep the base and add exponents	$\left(x^{m}\right)\left(x^{n}\right)=x^{m+n}$	$\left(x^{2}\right)\left(x^{3}\right)=x^{2+3}=x^{5}$
Quotient Keep the base and subtract exponents	$\frac{x^{m}}{x^{n}}=x^{m-n}$	$\frac{x^{7}}{x^{2}}=x^{7-2}=x^{5}$
Negative Exponent Use the reciprocal and change the exponent sign	$x^{-n}=\frac{1}{x^{n}} \quad \text { and } \quad \frac{1}{x^{-n}}=x^{n}$	$x^{-2}=\frac{1}{x^{2}} \quad \text { and } \quad \frac{1}{x^{-2}}=x^{2}$
Power Property Multiply exponents	$\left(x^{m}\right)^{n}=x^{m n}$	$\left(x^{2}\right)^{3}=x^{(2)(3)}=x^{6}$
Power of Products and Quotients Multiply the exponents and simplify	$\left(x^{m} y^{n}\right)^{p}=x^{m p} y^{n p}$ AND $\left(\frac{x^{m}}{y^{n}}\right)^{\mathrm{p}}=\frac{\mathrm{x}^{m p}}{y^{n p}}$	$\left(x^{2} y^{3}\right)^{4}=x^{(2)(4)} y^{(3)(4)}=x^{8} y^{12}$ AND $\left(\frac{x^{3}}{y^{2}}\right)^{4}=\frac{\mathrm{x}^{(3)(4)}}{y^{(2)(4)}}=\frac{\mathrm{x}^{12}}{y^{8}}$
Fractional Exponents	$b^{\frac{m}{n}}=(\sqrt[n]{b})^{m}=\sqrt[n]{b^{m}}$	$b^{\frac{2}{3}}=(\sqrt[3]{b})^{2}=\sqrt[3]{b^{2}}$ AND $b^{-\frac{2}{3}}=\frac{1}{(\sqrt[3]{b})^{2}}=\frac{1}{\sqrt[3]{b^{2}}}$
Power Rule for a Product Same exponents, multiply the base	$\left(a^{n}\right)\left(b^{n}\right)=(a \cdot b)^{n}$	$\left(2^{4}\right)\left(3^{4}\right)=(2 \cdot 3)^{4}=6^{4}=1296$

