FACTORING POLYNOMIALS

1) Common Factor - If each term has a common factor, always factor it out before proceeding with factoring.

$$
3 x^{4}+6 x^{3}-12 x^{2}=3 x^{2}\left(x^{2}+2 x-4\right)
$$

Sometimes it is helpful to factor out a -1. For example, $\quad \frac{x-3}{3-x}=\frac{x-3}{-(x-3)}=\mathbf{- 1}$
2) Trial and Error
$x^{2}+2 x-3=(x+?)(x-?)=(x+3)(x-1)$
3) Grouping

$$
\begin{aligned}
x^{3}-x^{2}+x-1 & =\underline{x^{3}-x^{2}}+\underline{x-1} \\
& =x^{2}(x-1)+1(x-1) \\
& =(x-1)\left(x^{2}+1\right)
\end{aligned}
$$

4) Diamond Method of Factoring - See Handout on Diamond Method of Factoring
5) Special Forms to Recognize
a) Sum of Squares

$$
\mathbf{A}^{2}+\mathbf{B}^{2} \quad \text { (cannot be factored) }
$$

b) Difference of Squares
$\mathbf{A}^{2}-\mathbf{B}^{2}=?{ }^{2}-\hat{?}^{2}=(\mathbf{A})^{2}-\mathbf{B}{ }^{2}=(\mathbf{A}-\mathbf{B})(\mathbf{A}+\mathbf{B})$
Example: $\left.x^{2}-9=? ?^{2}-\hat{?}^{2}=(x)^{2}-3\right)^{2}=(x-3)(x+3)$
Example: $4 x^{2}-81 y^{2}=? ?^{2}-?^{2}=(2 x)^{2}-9 y^{2}=(2 x-9 y)(2 x+9 y)$
c) Sum or Difference of Cubes

Sum: $\mathbf{A}^{3}+\mathbf{B}^{3}=?^{3}+\hat{?}^{3}=\left(\mathbf{A}^{3}+\right.$ B $^{3}=(\mathbf{A}+\mathbf{B})\left(\mathbf{A}^{2}-\mathbf{A B}+\mathbf{B}^{2}\right)$
Note: $\left(A^{2}-A B+B^{2}\right)$ cannot be factored any further
Diff: $\quad A^{3}-B^{3}=? ?^{3}-?^{3}=\left(A^{3}-B^{3}=(\mathbf{A}-\mathbf{B})\left(A^{2}+A B+B^{2}\right)\right.$
Note: $\left(A^{2}+A B+B^{2}\right)$ cannot be factored any further
Example: $x^{3}+8=? ?^{3}+\hat{?}^{3}=x^{3}+\underbrace{3}=(x+2)\left(x^{2}-2 x+2^{2}\right)=(x+2)\left(x^{2}-2 x+4\right)$
Example: $27 x^{3}-1=? ?^{3}-?^{3}=(3 x)^{3}-11^{3}=(3 x-1)\left((3 x)^{2}+3 x+(1)^{2}\right)$ $=(3 x-1)\left(9 x^{2}+3 x+1\right)$
d) Perfect Squares

$$
\begin{aligned}
& A^{2}+2 A B+B^{2}=(A+B)^{2} \\
& A^{2}-2 A B+B^{2}=(A-B)^{2}
\end{aligned}
$$

Example: $x^{2}-8 x+16=(x-4)^{2}$
e) Perfect Cubes

$$
\begin{aligned}
& A^{3}+3 A^{2} B+3 A B^{2}+B^{3}=(A+B)^{3} \\
& A^{3}-3 A^{2} B+3 A B^{2}-B^{3}=(A-B)^{3}
\end{aligned}
$$

Example: $x^{3}-9 x^{2}+27 x-27=(x-3)^{3}$

6) Completing the Square

If $x^{2}+b x$ is a binomial, then by add $\left(\frac{b}{2}\right)^{2}$ to create a perfect square trinomial.

$$
x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}
$$

Example: What term should be added to $x^{2}+8 x$ to create a perfect square trinomial?

$$
x^{2}+8 x+\left(\frac{8}{2}\right)^{2}=x^{2}+8 x+4^{2}=x^{2}+8 x+16=(x+4)^{2}
$$

Example: Solve by completing the square: $x^{2}-6 x+4=0$
First, subtract 4 from each side of the equation to isolate the binomial $x^{2}-6 x$:

$$
\begin{aligned}
x^{2}-6 x+4 & =0 \\
x^{2}-6 x & =-4
\end{aligned}
$$

Next, add $\left(\frac{-6}{2}\right)^{2}=(-3)^{2}=9$ to each side of the equation:

$$
\begin{aligned}
x^{2}-6 x+9 & =-4+9 \\
(x-3)^{2} & =5
\end{aligned}
$$

By taking the square root of each side of the equation:

$$
x-3=+\sqrt{5} \text { or } x-3=-\sqrt{5}
$$

Therefore, $\quad x=3+\sqrt{5}$ or $x=3-\sqrt{5}$

