FUNCTION FACTS

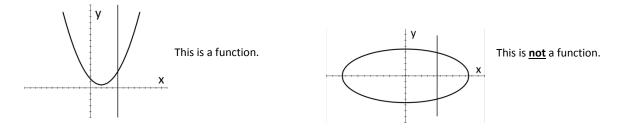
Definition of a Function:

A <u>function</u> is a rule that describes how one quantity depends upon another.

- f(x) = y is read "f of x."
- The output variable, *y* is the dependent variable because it depends on the input variable, *x* which is called the independent variable.
- For each input *x*, there is only one possible output *y*.
 Example: The set of points {(1,2), (2,4), (3,-1), (4,4)} is a function.

The set of points $\{(1,2), (2,4), (3,-1), (3,4)\}$ is not a function since an input of 3 yields more than one output.

Vertical Line Test: This tests whether or not a relation between two variables is a function. If a vertical line crosses the curve more than once, the relation is not a function.



Domain: The domain is the set of all possible values of x for which the function f(x) exists.

- *x* cannot cause a denominator to be zero.
- If *x* is under a square root (or any even root) sign, *x* cannot cause the expression under the root sign to be negative (when using real numbers).
- *x* must be greater than 0 for $y = \log_b x$.

<u>Range:</u> The range is the set of all possible values of the function, that is, the output variable, *y*.

Values of Functions:

Example: Let $f(x) = x^2 + 4x - 3$.

Find
$$f(2)$$
: $f(2) = 2^2 + 4(2) - 3 = 4 + 8 - 3 = 9$

Find
$$f(x + 1)$$
: $f(x + 1) = (x + 1)^2 + 4(x + 1) - 3 = x^2 + 6x + 2$

Algebra of Functions:

Sum:	(f+g)(x) = f(x) + g(x)	Difference:	(f-g)(x) = f(x) - g(x)
Product:	$(fg)(x) = f(x) \cdot g(x)$	Quotient:	$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ for $g(x) \neq 0$

Examples of the algebra of functions: Let f(x) = 2x and g(x) = x - 1.

Find
$$(f + g)(x)$$
: $f(x) + g(x) = (2x) + (x - 1) = 3x -$
Find $\left(\frac{f}{g}\right)(x)$: $\left(\frac{f}{g}\right)(x) = \frac{2x}{x-1}$, $x \neq 1$

Composite Functions:

Composite functions are created when the input of one function is the output of another function.

- $(f \circ g)(x) = f(g(x))$ and is read "f of g of x."
- The domain of $(f \circ g)(x)$ is the set of all values of x such that:
 - \circ x is in the domain of g and g(x) is in the domain of f
- When working a problem:
 - Since the output of g(x) is the input of the function f, work the inside parentheses first by substituting x into g(x) and then use that solution as the input for the function f.

1

• TIP: When substituting an expression or constant into an equation, always put parentheses () around it.

Example 1: Let
$$f(x) = 2x$$
 and $g(x) = x - 1$. Then,
 $(f \circ g)(x) = f(g(x)) = f(x - 1) = 2(x - 1) = 2x - 2$
 $(g \circ f)(x) = g(f(x)) = g(2x) = 2x - 1$

Example 2: Let
$$f(x) = x^2 - x + 1$$
 and $g(x) = 3x$. Then,
 $(f \circ g)(x) = f(g(x)) = f(3x) = (3x)^2 - (3x) + 1 = 9x^2 - 3x + 1$
 $(g \circ f)(x) = g(f(x)) = g(x^2 - x + 1) = 3(x^2 - x + 1) = 3x^2 - 3x + 3$

One-To-One Functions and the Horizontal Line Test:

One-To-One means that for each output y, there is only one possible x input. If a horizontal line crosses a curve more than once, it is not a one-to-one function. Note:

- Only one-to-one functions have inverse functions.
- All linear functions are one-to-one functions, except when the slope = 0.

Inverse Functions:

An inverse function, f^{-1} , "undoes" the action of a function so that $f^{-1}(f(x)) = x$ and $f(f^{-1}(x))$.

Example: To find the inverse of f(x) = x + 2 follow these four steps:

- 1. Replace f(x) with y: y = x + 2
- 2. Switch x and y: x = y + 2
- 3. Solve for y: y = x 2
- 4. Replace y with $f^{-1}(x)$: $f^{-1}(x) = x 2$