FUNCTION FACTS

Definition of a Function:

A function is a rule that describes how one quantity depends upon another.

- $f(x)=y$ is read " f of x."
- The output variable, y is the dependent variable because it depends on the input variable, x which is called the independent variable.
- For each input x, there is only one possible output y.

Example: The set of points $\{(1,2),(2,4),(3,-1),(4,4)\}$ is a function.
The set of points $\{(1,2),(2,4),(3,-1),(3,4)\}$ is not a function since an input of 3 yields more than one output.

Vertical Line Test: This tests whether or not a relation between two variables is a function. If a vertical line crosses the curve more than once, the relation is not a function.

Domain: The domain is the set of all possible values of x for which the function $f(x)$ exists.

- x cannot cause a denominator to be zero.
- If x is under a square root (or any even root) sign, x cannot cause the expression under the root sign to be negative (when using real numbers).
- x must be greater than 0 for $y=\log _{b} x$.

Range: The range is the set of all possible values of the function, that is, the output variable, y.

Values of Functions:

Example: Let $f(x)=x^{2}+4 x-3$.
Find $f(2): \quad f(2)=2^{2}+4(2)-3=4+8-3=9$
Find $f(x+1): \quad f(x+1)=(x+1)^{2}+4(x+1)-3=x^{2}+6 x+2$

Algebra of Functions:

Sum: $\quad(f+g)(x)=f(x)+g(x)$	Difference: $(f-g)(x)=f(x)-g(x)$
Product: $\quad(f g)(x)=f(x) \cdot g(x)$	Quotient: $\quad\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$ for $g(x) \neq 0$

Examples of the algebra of functions: Let $f(x)=2 x$ and $g(x)=x-1$.
Find $(f+g)(x): \quad f(x)+g(x)=(2 x)+(x-1)=3 x-1$
Find $\left(\frac{f}{g}\right)(x): \quad\left(\frac{f}{g}\right)(x)=\frac{2 x}{x-1}, x \neq 1$

Composite Functions:

Composite functions are created when the input of one function is the output of another function.

- $(f \circ g)(x)=f(g(x))$ and is read " f of g of x."
- The domain of $(f \circ g)(x)$ is the set of all values of x such that:
$0 \quad x$ is in the domain of g and $g(x)$ is in the domain of f
- When working a problem:
o Since the output of $g(x)$ is the input of the function f, work the inside parentheses first by substituting x into $g(x)$ and then use that solution as the input for the function f.
o TIP: When substituting an expression or constant into an equation, always put parentheses () around it.

Example 1: Let $f(x)=2 x$ and $g(x)=x-1$. Then,

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))=f(x-1)=2(x-1)=2 x-2 \\
& (g \circ f)(x)=g(f(x))=g(2 x)=2 x-1
\end{aligned}
$$

Example 2: Let $f(x)=x^{2}-x+1$ and $g(x)=3 x$. Then,

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))=f(3 x)=(3 x)^{2}-(3 x)+1=9 x^{2}-3 x+1 \\
& (g \circ f)(x)=g(f(x))=g\left(x^{2}-x+1\right)=3\left(x^{2}-x+1\right)=3 x^{2}-3 x+3
\end{aligned}
$$

One-To-One Functions and the Horizontal Line Test:

One-To-One means that for each output y, there is only one possible x input. If a horizontal line crosses a curve more than once, it is not a one-to-one function.
Note:

- Only one-to-one functions have inverse functions.
- All linear functions are one-to-one functions, except when the slope $=0$.

Inverse Functions:

An inverse function, f^{-1}, "undoes" the action of a function so that $f^{-1}(f(x))=x$ and $f\left(f^{-1}(x)\right)$.

Example: To find the inverse of $f(x)=x+2$ follow these four steps:

1. Replace $f(x)$ with y :

$$
y=x+2
$$

2. Switch x and y :

$$
x=y+2
$$

3. Solve for y :
$y=x-2$
4. Replace y with $f^{-1}(x)$:

$$
f^{-1}(x)=x-2
$$

