PROPERTIES OF LOGARITHMS

Definition:

For $x, b>0, b \neq 1$
$\log _{b} x=y \quad \Leftrightarrow \quad b^{y}=x$
Natural Logarithm
Common Logarithm
$\ln x=\log _{e} x$
$\log x=\log _{10} x$

Property Name	Property	Example
One-to-one	$\begin{aligned} & \log _{b} y=\log _{b} x \Leftrightarrow x=y \\ & \text { for } b>0, b \neq 1 \end{aligned}$	$\begin{aligned} \log _{10} x & =\log _{10} 8 \\ x & =8 \end{aligned}$
Property of One	$\log _{b} 1=0$	$\log _{5} 1=0$
Multiplication Property	$\log _{b}(x y)=\log _{b} x+\log _{b} y$	$\log _{2}(5 x)=\log _{2} 5+\log _{2} x$
Division Property	$\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$	$\log _{6}\left(\frac{x}{7}\right)=\log _{6} x-\log _{6} 7$
Power Property	$\log _{b} x^{r}=r \log _{b} x$	$\log _{3} x^{5}=5 \log _{3} x$
Inverse Property	$\begin{array}{ll} b^{\log _{b} x}=x & \text { and } \log _{b} b^{x}=x \\ \text { Therefore: } & \log _{b} b=1 \\ & \ln e=1 \\ & \log 10=1 \end{array}$	$\begin{aligned} & 4^{\log _{4} 6}=6 \\ & \log _{4} 4^{6}=6 \end{aligned}$ If $\quad \ln \frac{x+2}{4 x+3}=\ln \frac{1}{x}$, then $\quad e^{\ln \left(\frac{x+2}{4 x+3}\right)}=e^{\ln \left(\frac{1}{x}\right)}$ and $\quad \frac{x+2}{4 x+3}=\frac{1}{x}$
Change of Base	$\log _{b} x=\frac{\log _{a} x}{\log _{a} b}$	$\log _{8} 11=\frac{\log _{5} 11}{\log _{5} 8}=\frac{\log 11}{\log 8}=\frac{\ln 11}{\ln 8}$

PROPERTIES OF LOGARITHMS

Examples

1. Solve by using the Definition:

$$
\begin{aligned}
\log _{4} 64 & =y \Leftrightarrow 4^{y}=64 \\
4^{3} & =64
\end{aligned}
$$

Therefore: $\mathrm{y}=3$ and $\log _{4} 64=3$
2. Simplify by using the Multiplication Property and Definition:

$$
\begin{aligned}
\log _{4} 2+\log _{4} 32 & =\log _{4}(2 \cdot 32) \\
& =\log _{4} 64 \\
& =3
\end{aligned}
$$

3. Simplify by using the Power Property and Multiplication Property:

$$
\begin{aligned}
2 \ln x+\ln (x+1) & =\ln x^{2}+\ln (x+1) \\
& =\ln \left[x^{2}(x+1)\right] \\
& =\ln \left(x^{3}+x^{2}\right)
\end{aligned}
$$

5. Solve by using the Division Property:

$$
\begin{aligned}
\ln (x+2)-\ln (4 x+3) & =\ln \left(\frac{1}{x}\right) \\
\ln \left(\frac{x+2}{4 x+3}\right) & =\ln \left(\frac{1}{x}\right)
\end{aligned}
$$

(One-to-one or Inverse) $\quad \frac{x+2}{4 x+3}=\frac{1}{x}$
$x(x+2)=4 x+3$
$x^{2}+2 x=4 x+3$

$$
x^{2}-2 x-3=0
$$

$$
(x-3)(x+1)=0
$$

Therefore: $x=3$ and $x=-1$

Always check proposed solutions of a logarithmic equation in the original equation. Exclude from the solution set any proposed solution that produces the log of a negative number or the log of 0 . $x=-1$ does not work since it produces the log of a negative number. Therefore, the solution is: $x=3$
6. Solve by using the Inverse Property:

$$
\begin{aligned}
6 e^{12 x} & =18 \\
e^{12 x} & =\frac{18}{6} \\
\ln e^{12 x} & =\ln \left(\frac{18}{6}\right) \\
12 x & =\ln (3) \\
x & =\frac{\ln (3)}{12} \approx .092
\end{aligned}
$$

