Name

I4 1. Solve each system (if possible). State the solution VERY clearly. If there is no solution, say so. You may use a calculator to put each augmented matrix in RREF.
a. $\left\{\begin{array}{l}3 x-y-3 z=4 \\ 2 x-y+4 z=1 \\ 5 x-2 y+z=5\end{array}\right.$
b. $\left\{\begin{array}{l}2 w+3 x-y-3 z=4 \\ 5 w-2 x-y+4 z=1 \\ 7 w+y-2 y+z=0\end{array}\right.$

10 2. If possible, find a so that: $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \cdot\left[\begin{array}{ll}3 & 4 \\ 2 & a\end{array}\right]=\left[\begin{array}{cc}7 & 3 \\ 17 & 10\end{array}\right]$. Show your work. $\left[\begin{array}{ll}3+4 & 4+29 \\ 2+0 & 12+42\end{array}\right]=\left[\begin{array}{l}73 \\ 1710\end{array}\right) \Rightarrow \begin{aligned} & 4+20=3 \\ & 12+40=10\end{aligned}$

10 3. Find all values of the scalar a for which the matrix $\left[\begin{array}{lll}0 & 2 & a \\ 0 & a & 3 \\ 3 & 1 & 2\end{array}\right]$ is not invertible.
4. Assume A, B, C, D are nun matrices, and A and C are invertible. Solve the following matrix equation for B, using steps appropriate for matrices:

$$
\begin{aligned}
& A B C=D \\
& A^{-1} A B C=A^{-1} D \\
& I B C=A^{-1} D \\
& B C=A^{-1} D \\
& B C C^{-1}=A^{-1} D C^{-1} \\
& B I=A^{-1} D C^{-1} \\
& B=A^{-1} D C^{-1}
\end{aligned}
$$

5. Recall that the trace of a matrix, denoted $\operatorname{tr}(\mathrm{A})$, is just the sum of the diagonal entries. Prove that for any scalar $\mathrm{c}, \operatorname{tr}(\mathrm{cA})=\mathrm{ctr}(\mathrm{A})$.

$$
\begin{aligned}
\operatorname{tr}(C A) & =\sum_{i=1}^{n} \operatorname{ent} i_{i}(c A) \\
& =\sum_{i=1}^{n} C_{i} \operatorname{ent} i_{i}(A) \\
& =C \cdot \sum_{i=1}^{n} \operatorname{entin}(A) \\
& =(\cdot+1(A)
\end{aligned}
$$

10 6. Determine if the set of all 3×1 vectors is a vector space under the standard operation of vector addition with scalar multiplication defined as follows: $k \cdot\left[\begin{array}{l}d \\ e \\ f\end{array}\right]=\left[\begin{array}{c}k d \\ d+f \\ k f\end{array}\right]$. Justify your answer either by showing at least one axiom that fails and how it fails or else by showing the zero and additive inverse vectors.
avion B require That $1 \cdot \vec{v}=\vec{v}$

$$
\text { Put } 1 \cdot\left[\begin{array}{c}
d \\
f \\
f
\end{array}\right]=\left[\begin{array}{l}
1 . d \\
d, f \\
1, f
\end{array}\right]=\left[\begin{array}{l}
d \\
d, f \\
d
\end{array}\right] \neq\left[\begin{array}{l}
1 \\
d \\
f
\end{array}\right]
$$

$10 \quad$ 7. Is the set of all symmetric matrices a subspace of $M_{n x n}$? Justify your answer.
(1) The sum of symmetric matrices is symmetric

$$
\left(i_{\mathrm{hm}}(1.14 .1)\right.
$$

(1) If A st symmex:i, CA is. (Than la, in)
so lloyd under Θ and o so ger
8. Give a basis for the set of diagonal 3×3 matrices.

$$
\left\{\left[\begin{array}{lll}
1 & \ddots & 0 \\
0 & 0 & 0
\end{array}\right],\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\right\}
$$

10 9. Let the vector $<a, b, c>$ be an element of the subspace of R^{3} spanned by the set of vectors $\{<1,0,0\rangle,\langle 2,-1,3\rangle,<1,2,-5\rangle\}$. What are the conditions necessary for a, b, c ? In other words, are there any restrictions on $\mathrm{a}, \mathrm{b}, \mathrm{c}$? Answer VERY clearly.

$$
\begin{aligned}
& \text { Let }\langle a, b, c\rangle=c_{1}\langle 1,0,0\rangle+c_{2}\langle 2,-1,3\rangle+c_{3}\langle 1,2,-5\rangle \\
& {\left[\begin{array}{ccc|c}
1 & 2 & 1 & a \\
0 & -1 & 2 & b \\
0 & 3 & -5 & c
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & 1 & 9 \\
0 & 1 & -2 & -b \\
0 & 0 & 1 & c+3 b
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & 0 & a-c-3 b \\
0 & 1 & 0 & 2 c+5 b \\
0 & 0 & 1 & c+3 b
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & a-3-1-b \\
0 & 1 & 2 c & 2 c-5 b \\
0 & 0 & 1 & c+3 b \\
b
\end{array}\right.} \\
& S_{0}: \quad C_{1}=c+3 b \\
& C_{2}=5 \mathrm{btac} \\
& C_{3}=a \cdot 3 C-B b
\end{aligned}
$$

Pen values ore define for all a, b, c
so (no restrictions)

10 10. Are the matrices $\left\{\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 3 & 2\end{array}\right],\left[\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}3 & 6 \\ 10 & 8\end{array}\right]\right\}$ linearly independent?
Explain, using the definition of linear independence.
led

$$
\begin{aligned}
& C_{1}\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+C_{1}\left[\begin{array}{ll}
1 & 1 \\
3 & 2
\end{array}\right]+C_{1}\left[\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right]+C_{4}\left[\begin{array}{ll}
3 & 6 \\
1 & 8
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& {\left[\begin{array}{llll|l}
1 & 1 & 0 & 3 & 0 \\
2 & 1 & 2 & 6 & 0 \\
3 & 3 & 1 & 0 & 0 \\
4 & 2 & 0 & 8 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{llll|l}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow c_{3}=-c_{4}}
\end{aligned}
$$

There are nontrivial soletime bo the system, so no

