1. Consider the transformation: $T: P_{n} \rightarrow P_{n+2}$ defined by $T\left((p(x))=x^{2} p(x)\right.$. Is T a linear transformation? Prove that your answer is correct.

$$
\text { (ITT[p(x)+q(x)]=}=x^{2}[p(x)+q(x)]=x^{2} p(x)+x^{2} q(x)=T[p(x)]+T[q(x)]
$$

(2) $T[c p(x)]=x^{2} \cdot\left(p(x)=C \cdot x^{2} p(x)=C \cdot T[p(x)]\right.$

$$
\text { so } y, y
$$

2. Consider the linear transformation $T: R^{3} \rightarrow R^{3}$ where $T(\vec{x})=A \vec{x}$. Find the kernel of this transformation given that

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
6 & 9 & 12
\end{array}\right] \quad \text { Find } \vec{x} \text { such that } T(\vec{x})=A \vec{x}=\overrightarrow{0} \\
& {\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
4 & 5 & 6 & 0 \\
6 & 9 & 12 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow \begin{array}{l}
x_{1}=x_{3} \\
x_{2}=-2 x_{3} \\
x_{3}=x_{3}
\end{array} \quad \vec{x}=\left[\begin{array}{c}
t \\
-2 t \\
t
\end{array}\right]}
\end{aligned}
$$

3. Is the matrix $A=\left[\begin{array}{lll}5 & 2 & 4 \\ 0 & 3 & 1 \\ 0 & 0 & 3\end{array}\right]$ diagonalizable? Explain. $\lambda=3(\mathrm{mu} /+2), \lambda=5$

$$
\lambda=3^{\prime} \cdot(\lambda I \cdot A) \vec{x}=\overrightarrow{0} \Rightarrow\left[\begin{array}{ccc|c}
-2 & -2 & -4 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \begin{aligned}
& \rightarrow x_{3}=0 \\
& -2 x_{1}-2 x_{2}=0 \\
& x_{1}=-x_{2}
\end{aligned} \quad \vec{x}=\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]
$$

(No) since only one e. vector for $\lambda=3$ by mulct. 2 (eigenvector)
4. For $\left[\begin{array}{ll}3 & 10 \\ 6 & -1\end{array}\right]$, find all eigenvalues and bases for the corresponding eigenspaces.

$$
\left.\begin{array}{rl}
\left|\begin{array}{cc}
\lambda-3 & -10 \\
-6 & \lambda+1
\end{array}\right|=0 \Rightarrow \begin{array}{c}
\lambda^{2}-2 \lambda-63=0 \\
(\lambda-9)(\lambda+7)=0
\end{array} \quad \lambda=9,-7 \\
\text { let } t=3 \\
\lambda & =9\left[\left.\begin{array}{cc|}
6 & -10 \\
-6 & 10
\end{array} \right\rvert\, 0\right.
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
6 & -10 \\
0 & 0 & 0
\end{array}\right] \rightarrow \vec{\lambda}=\left[\begin{array}{l}
\frac{5}{3} t \\
t
\end{array}\right] \rightarrow\left\{\left[\begin{array}{l}
5 \\
3
\end{array}\right]\right\} ?
$$

$$
\left.\lambda=7\left[\begin{array}{ccc}
-10 & -10 & 0 \\
-6 & -6 & 0
\end{array}\right]+\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0 \\
0
\end{array}\right]+\dot{x}\left[\begin{array}{l}
t \\
t
\end{array}\right] \rightarrow\left\{\begin{array}{l}
-1 \\
1
\end{array}\right]\right\}
$$

5. Use your answer from problem 4 to solve the system $\vec{Y}^{\prime}=A \vec{Y}$, where A is the matrix in problem 4.

$$
\vec{Y}=c_{1}\left[\begin{array}{l}
5 \\
3
\end{array}\right] e^{9 t}+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-7 t}
$$

6. Suppose 3×3 matrix A has eigenvalues $\lambda=5$ (multiplicity two) and $\lambda=-7$, with $\left\{\left[\begin{array}{l}1 \\ 6 \\ 7\end{array}\right],\left[\begin{array}{l}1 \\ 6 \\ 0\end{array}\right]\right\}$ a basis for E_{5}, and with $\left\{\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]\right\}$ a basis for E_{-7}. Find the matrix P that you would use to diagonalize A, and also find D such that $D=P^{-1} A P$.

$$
P=\left[\begin{array}{lll}
i & 1 & 2 \\
6 & 6 & 2 \\
7 & 0 & 1
\end{array}\right] \quad D=\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & -7
\end{array}\right]
$$

7. Is it possible for $\vec{Y}=c_{1}\left[\begin{array}{c}12 \\ 9\end{array}\right] e^{8 x}+c_{2}\left[\begin{array}{l}4 \\ 3\end{array}\right] e^{8 x}$ to be the general solution to a second order system of first order HLDE's? Explain.
[10) Since $\vec{y}_{1}=3 \vec{r}_{2}$ fo \vec{y}_{1} and $\overrightarrow{y_{2}}$ are not L.I.

$$
\begin{aligned}
& (A-\lambda I) \vec{p}=\vec{k} \cdot\left[\begin{array}{ll}
6-18 \mid \\
2-6 \mid
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & -3 & \frac{1}{2} \\
0 & 0 & 0
\end{array}\right] \rightarrow \vec{p}=\left[\begin{array}{l}
3 t+1 / 2 \\
t
\end{array}\right] \text { or } \\
& \left(\vec{H}=c_{1}\left[\begin{array}{l}
3 \\
1
\end{array} e^{-3 t}+C_{2}\left(\left[\begin{array}{l}
3
\end{array}\right] t e^{-3 t}+\left[\begin{array}{c}
\frac{1}{2} \\
0
\end{array}\right] e^{-3 t}\right)\right]\right.
\end{aligned}
$$

9. Consider the system: ${ }^{y_{1}^{\prime}}=3 y_{1}-18 y_{2}-7 x$. Using your answer to problem 8 as a

$$
y_{2}=2 y_{1}-9 y_{2}+5 e^{x}
$$ reference, find the Matrix M and vector \vec{G} that you would use to solve the system.

$$
M=\left[\begin{array}{ll}
3 e^{-3 t} & 3 t e^{-3 t}+\frac{1}{2} e^{-3 t} \\
e^{-3 t} & t e^{-3 t}
\end{array}\right] \quad \vec{G}=\left[\begin{array}{c}
-7 x \\
5 e^{x}
\end{array}\right]
$$

10. Consider the linear transformation $T: P_{1} \rightarrow P_{1}$ where $T(a x+b)=a x+4 a-2 b$.

Find the eigenvalues and bases for the eigenspaces of this linear transformation, using $A=[T]_{\alpha}^{\alpha}$ where α is the standard basis for $P_{1}: \alpha=\{x, 1\}$.

$$
\text { i.e, } T(1)=-2(1)
$$

$$
T(3 x+4)=1 \cdot(3 x+4)
$$

\[

\]

11. Find one eigenvalue and one corresponding eigenvector of the linear transformation $T: R^{2} \rightarrow R^{2}$ where $\mathrm{T}(\mathrm{x}, \mathrm{y})$ consists of the reflection of the point (x, y) across the origin. Hint: you can use the definition $T(\vec{v})=\lambda \vec{v}$ and just think graphically.

Any point reflective across origin will ham the opposite

$$
\text { ie. } T(x, y)=(-x,-y)=-1(x, y)
$$

So. $\lambda=-1$ with $\vec{v}=\langle x, y\rangle$

$$
\begin{align*}
& \begin{array}{l}
T(x)=+(1 \cdot x+0)=1 \cdot x+4 \cdot 1-2 \cdot 0=1 \cdot x+4 \cdot 1 \\
T(1)=+(0 \cdot x+1 \cdot 1)=0 \cdot x+4 \cdot 0-2.1=0 \cdot x-2 \cdot 1
\end{array} \rightarrow A=\left[\begin{array}{cc}
1 & 0 \\
4 & -2
\end{array}\right] \\
& |\lambda I \cdot A|=0 \Rightarrow\left|\begin{array}{cc}
\lambda-1 & 0 \\
-4 & \lambda+2
\end{array}\right|=0 \Rightarrow \lambda^{2}+\lambda-2=0 \Rightarrow \lambda=-2,1 \\
& \lambda=2:\left[\begin{array}{ll|l}
-3 & 0 & 0 \\
-4 & 0 & 0
\end{array}\right] \rightarrow \vec{p}_{1}=\left[\begin{array}{l}
0 \\
t
\end{array}\right] \rightarrow \text { use } \vec{p}_{1}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { so } 0 \cdot x+1 \cdot 1= \tag{1}\\
& \lambda=1:\left[\begin{array}{cc|c}
0 & 0 & 0 \\
-4 & 3 & 0
\end{array}\right] \rightarrow \vec{P}_{2}=\left[\begin{array}{c}
\frac{3}{4} t \\
t
\end{array}\right] \rightarrow \begin{array}{c}
t=4 \\
t=y
\end{array} \vec{P}_{2}=\left[\begin{array}{l}
3 \\
y
\end{array}\right] \text { s. } 3 \cdot x+4 \cdot 1=3 x+4
\end{align*}
$$

